Testing some math symbols:
S = ∫ d 3 x ϕ ( x ) ( − ∂ 2 + m 2 ) ϕ ( x ) . {\displaystyle S=\int d^{3}x\,\phi (x)(-\partial ^{2}+m^{2})\phi (x).\,}
S = − [ ∑ x , μ ^ ϕ ( x ) ( ϕ ( x + μ ^ ) + ϕ ( x − μ ^ ) ) ] + ( 6 + m 2 ) ∑ x ϕ 2 ( x ) {\displaystyle S=-\left[\sum _{x,{\hat {\mu }}}\phi (x)(\phi (x+{\hat {\mu }})+\phi (x-{\hat {\mu }}))\right]+(6+m^{2})\sum _{x}\phi ^{2}(x)}
G ( x , y , z ) ≡ ⟨ ϕ ( x , y , z ) ϕ ( 0 , 0 , 0 ) ⟩ {\displaystyle G(x,y,z)\equiv \langle \phi (x,y,z)\phi (0,0,0)\rangle }
G ~ ( z ) = ∑ x , y G ( x , y , z ) {\displaystyle {\tilde {G}}(z)=\sum _{x,y}G(x,y,z)}
G ( x ) = ∫ d 3 p ( 2 π ) 3 e − i p ⋅ x p 2 + m 2 {\displaystyle G(\mathbf {x} )=\int {\frac {d^{3}p}{(2\pi )^{3}}}{\frac {e^{-i\mathbf {p} \cdot \mathbf {x} }}{\mathbf {p} ^{2}+m^{2}}}}